Objective knowledge | reliable knowledge | BSI

Scientific objectivity is a property of various aspects of science. It expresses the idea that scientific claims, methods, results—and scientists themselves—are not, or should not be, influenced by particular perspectives, value judgments, community bias or personal interests, to name a few relevant factors. Objectivity is often considered to be an ideal for scientific inquiry, a good reason for valuing scientific knowledge, and the basis of the authority of science in society. [Stanford, 201030]


Mentions


A goal of science is to move from the subjective to the objective. It is with that goal in mind that we consider the relationship between observations, measurements, and facts. [CrossFit, 200401]

Consistency and objectivity

Science deals with observations of the real world — obtained via the use of our senses — which we can define, record, measure, and quantify or order. Record means to capture data in a physical medium that is amenable to measurements and does not simply refer to the notes of an observer.

In order to be useful, each model of a real-world phenomenon must be consistent for all observers. From the imperative demand for consistency, then, comes the requirement for measurements. Measurements compare observations with standards, creating what science calls facts. In this context, the terms “measurements” and “facts” become interchangeable. They are what scientists and philosophers call a posteriori, meaning “after the fact” or “from experience.” Making measurements, showing consistency, and sharing results are all scientific processes that assure objectivity. Science thus becomes the objective branch of human knowledge.

Put another way, the act of measuring, the grading of observations according to standards, and the use of precision in language are processes necessary to achieving objectivity: the separation of observations from perception processes. [CrossFit, 200401]

Accuracy and repeatability

Scientists must grapple with the fact that all measurements are eventually sensed and perceived by a human. We use our eyes to read a ruler. Science is based on a comparison with the ruler, subject to our errors in reading it. (Measurement training helps us develop a perspective of how brief and limited human observations are, and how an accuracy limitation underlies each measurement.)

The scientific community thus automatically subjects any novel facts to tests for repeatability. Science measures repeatability statistically in terms of variability or accuracy. The process of reducing an observation to a measurement is not complete until an assessment of its accuracy is available.

In conclusion: Observations are too general and include subjective perceptions. The first step in objectivity is to compare the observations to standards. In the most general sense, this is the process of making measurements, or creating facts. Science looks for repeatable things called patterns in the measurements. The descriptions of the patterns are models, as we will consider in our next entry in this series. [CrossFit, 200401]


In the process of constructing a definition [of modern science], we analyze our expectations of science. The process begins with an examination of the limits of human perception and knowledge. Our need to break through the bounds of individual perceptions is the same as our need to share knowledge and creates a requirement for objectivity. This leads to both a definition and a mission statement for science, which is the objective branch of knowledge. [CrossFit, 200210]

Science Defined

We must offer a definition of science in order for it to be rationally taught. Science demands precision in language, and it cannot thrive without it.

  1. Science is a branch of knowledge. Science is not an obscure occupation, safely ignored by anyone who might lack interest in its study or by the intellectually lazy. It is impossible to escape its realities and consequences.
  2. Science is the objective branch of knowledge. Science has no bounds to its domain other than dealing with things that man can define, record, measure, and quantify or order. Even these attributes will not assure objectivity, as even a group of well-trained observers can fool themselves into thinking that the group has made a discovery. From early childhood, each person’s senses and mental models shape their perceptions of the real world. These models are created by the brain and, in spite of their imperfection, are essential for the interpretation of our senses. These models are the essence of both observation and subjectivity, and they can be improved through training in science.
  3. Science is shared, public knowledge. Objectivity, the stripping of the subjective from our mental models, comes from open sharing. Sharing mandates the least ambiguity. Openness allows criticism and growth. Sharing allows others to make similar observations in spite of their subjective biases. It empowers many brains to concentrate coherently on a subject. We can distinguish this from the post-modern science emphasis on consensus, which constructs a paradigm whereby votes or popularity define a result rather than open-source, critical testing.
  4. Science creates models that account for observations of the real world. Science creates objective models that replace private, subjective models. These scientific models account for all relevant facts in their domain and predict new phenomena or relationships.
  5. Scientific models build on measurements of the observations. Measurements, the result of comparing observations with standards, provide consistency in observations and permit the sharing of experiences in an objective way. Measurements create facts; facts are measurements.
  6. Scientific models require validation through demonstrated predictions of qualitatively new phenomena or relationships. A qualitatively new phenomenon is one involving different parameters than those that formed the facts the scientist used to create the model. [CrossFit, 200210]

Objective knowledge evolves like life, proceeding randomly from a settled base into perpetually new territories. The progress may be guided by the most intelligent humans on Earth, but it is random because success has a large unpredictable component. Strong theories survive, subsuming weak theories or abandoning them to die. Complex ideas build on the simple. The trends are positive, and the process is irreversible. [CrossFit, 200210]